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The formation of condensed oxide particles in combustion of metal droplets is discussed;
it is assumed that the characteristic diffusion time is much less than the characteristic
time for the heterogeneous reaction at the condensate particle surfaces, and the structure
of the reaction zone is discussed; the size spectrum is derived for the condensed oxide
particles. It is found that condensation in the gas has little effect on the droplet combus-
tion rate, Heat needed to evaporate the metal is produced directly at the surface of the
drop and the rate-limiting step in the combustion is the diffusion of oxidant to the surface.

A major feature of metal combustion is that the combustion products are particles of condensed -
material. The theory of metal combustion should include the theory of metal particle formation and give
the size spectrum, The formation mechanism and the particle spectrum can be elucidated via the conden-
sation kinetics and the structure of the reaction zone. In constructing a model for metal droplet combus-
tion [1] one extends the model for combustion of a hydrocarbon fuel droplet, which involves the concept of
an infinitely narrow flame front, which does not include the structure of the reaction zone,

Research on condensed oxide formation from metals is only in an early stage. One assumes that the
oxides of metals such as aluminum and magnesium decompose almost completely on evaporation since
they are very refractory compounds, and can thus condense directly from the products by decomposition,
i.e., from the vapors of the metal and oxidant, without directly forming the oxide vapor. This assumption
was made in [2], and it involves representing the condensation of the oxide as a reaction that begins with
the formation of aggregates containing metal and oxygen atoms, -which act as nuclei, this continuing at the
expense of the metal and oxidant interaction at the surface.

The chemical condensation is accompanied by evaporation and oxide decomposition, the result being
an equilibrium with the two rates equal. The oxide formation rate is dependent on deviation from equili-
brium, which is defined, as for an ordinary condensation, by the supersaturation © = (Te—T) /Te, where T
is the actual temperature and Te is the temperature corresponding to chemical equilibrium between the
condensed material and the gaseous products.

When a metal droplet burns, one can use asthe measure of deviation from equilibrium in the con-
densation a quantity dependent on the rate of mixing by diffusion between the metal vapor from the droplet
and the oxidant from the outside. The more quickly the reactants enter the reaction zone, the greater the excess
of condensation over evaporation, It is of interest to consider the case where the diffusion is so rapid that
the condensation deviates as far as possible from equilibrium, when the oxide formation rate will not be
dependent on the supersaturation and is small relative to the diffusion rates. This situation can occur if
the size of the hot metal droplets is sufficiently small, in which case the diffusion fluxes, which are in-
versely proportional to the droplet diameter, become high; estimates show that this situation can occur
for a metal droplet of the size commonly employed in experiments.

The following is the picture of the burning pattern. The metal vapor is oxidized in the surrounding
gas, but this has little effect on the metal vapor concentration and oxygen concentration near the droplet;
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the reaction zone in the gas extends far away from the droplet, and has little effect on the penetration of
oxidizing gases to the metal surface. The heat needed to evaporate the metal then is provided mainly by
the oxidation directly at the droplet.

The calculations then relate to the oxide formation in the gas zone, We do not consider here the
formation of oxide at the hot droplet, but it is assumed that the oxide form there does not constitute a
continuous film and does not hinder evaporation and oxidation,

Let the condensation rate function be
D= klalaaxIPIHS (1)

where af and aox are the relative volume concentrations of the droplet evaporation products and oxidant,
respectively, with p the gas density and s the specific surface per unit volume for the condensate particles.

By analogy with the condensation rate we assume that the nucleation rate is also proportional to the
condentrations of oxidant and droplet evaporation products raised to some power:

dn | dt = keaPa, %P1 2)
where n is the number of nuclei in unit volume.

The oxidation of a metal is a reaction of addition type with a low activation energy, so one assumes
that the coefficients of proportionality ki and ky in (1) and (2) are constant and independent of temperature,

Consider a stationary spherical droplet of radius ry in a medium of temperature t; containing an
oxidant concentration agy .

The problem may be simplified via various assumptions. Firstly, let the rate of formation of con-
densed particles equal the rate represented by the Stefan flux from the droplet surface. Secondly, we
assume that the rates of consumption of oxidant and evaporation products in the nuclei are small relative
to the condensation rate. Condensation theory indicates that the nucleus size falls rapidly as the super-
saturation increases, and the supersaturations are assumed high in the present case, so the nuclei are
very small. Thirdly, we assume that reactions (1) and (2) are of second order (p =q =1 = 1),

We introduce the following dimensionless variables and parameters: &= r/r,the distance from the
droplet surface, & = kiprozs o/D the ratio of the characteristics diffusion time to the characteristic hetero-
geneous reaction time for the nuclei, S = s/s; the specific surface of the growing oxide particles, and /&=
urO/D the speed of the Stefan flux. If £=1 (at the droplet surface), the latter quantity is equal to Bo=u,r,/D,
where D is the diffusion coefficient, u is the speed of the Stefan flux, and s;=[47(p /oo 4,0 /k(]1/% is the
characteristic value for the specific surface of the condensate particles.

We assume that the thermal diffusivities and diffusion coefficients are equal for all substances and
independent of temperature and gas composition, in which case the dimensionless equations become as
follows: the diffusion equation for the droplet evaporation products:

d R da
o <Ba, — d—‘gf> = —v,820%.a,,S (3)
The equation for the Stefan flux speed:
dp [ di = —vb*asa,,S (4)

In (3) we replace subscript f by subscripts ox, p, and i to derive analogous equations for the oxidant,
decomposition products, and inert gas. In the equation for the decomposition products from the oxidant
the right side should be positive, while in that for the inert gas it should be zero. The parameters v, vox,
Vp, and v = vg + Vox ~ vp introduced into the equations are the stoichiometric coefficients for the hetero-
geneous reaction at the surface of the nuclei: ve[f] + v, Jox]= [e] + Vp[p], where [f], lox], {e], Ip] are the
droplet evaporation products, the oxidant, the condensate, and the oxidant decomposition products.

Consider the boundary conditions needed to solve (3) and (4); at the surface of an evaporating droplet
with % =1 these conditions become

da, da v, da
P p %84
ay = a/foy a,, = Oa <13a1 - _d.fl‘> = Os (Ba’P - E) -5 dogr (5)

oY

This means firstly that the concentration as° of the droplet evaporation products at the surface corre~
sponds to the saturation vapor concentration at temperature Tg; secondly, there is a heterogeneous reaction
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of very high rate at the droplet surface; and thirdly, the droplet surface is impermeable to the decomposi-
tion products from the oxidant and inert gas.

The boundary conditions in the surrounding medium for £ — « become
Qo = aoxo, af = O, dp = O, a; = (1 —_— a0x°) (6)
The right sides of (3) and (4) contain the unknown quantity S; to determine this we consider the equa-
tion for the mass change in a single condensate particle and the equation for the nucleation rate in unit

volume. We assume that the particles are spherical and that (1) and (2) apply to the condensation and
nucleation rates, in which case the equations become: for the particle mass change

dg | d§ = (36m)p8%2a 008" / PeiPs, @
for the nucleation rate:
dfn [ df’ = kyore? (£')a; (§') @4= (L) / D (8)

We integrate (7) to find the particle diameter as a function of the coordinate ¢' =r'/ry, at which the
nucleus is formed:

|4
& ¢ Cha G
q):Z—EC—*SOS———’ dg ©

We multiply (8) by the area of a particle having the diameter defined by (9) and integrate the expression
with respect to £' to get

v (10)

(1}
g

o= { o gz 0 =g
1

1

C'Zafao:c
5 d

We substitute (10) into (4) and differentiate with respect to 0_ to get (12)
A%/ dB4 = —2vp (11)
We solve this equation subject to the boundary conditions 60— = 0, B = By, dB/d8-. = 0, d*B/ab_% = o,
a3p/d0_% = 0 to get (12) ‘
f = Pgecosl(v/2)48_] ch [(v/2)"0_] (12)
This shows that the Stefan flux becomes zero at some point £ *,where 6_ =6 _* = (2/v)1/47r/2.

We then eliminate the right sides from (3) and (4) and integrate the resulting expression with respect
to ¢ on the basis that the flux of droplet-evaporation products at infinity is zero, which gives
da,

By — L == (8 — Ba) (13)

where fBo is the Stefan flux at infinity.

In the case of a metal droplet burning in water vapor or carbon dioxide (Vp = Vox, V = ¥f) the volume
flow rate of oxidant decomposition products (Hy or CO) from the reaction zone equals the volume flow rate
of the oxidant to the droplet, hence B« = 0; if a droplet of metal in oxygen, B» is finite and negative.

To determine how 6_ varies with ¢, we use the following equation derived from (10)
do_/dt = 8°C%am,, / P (14)
The boundary conditions for (14) is £=1, 6- = 0 by virtue fo the definition of 8 _ given by (10).

We subsequently suppose that the characteristic diffusion time roz/D is small relative to the charac-
teristic heterogeneous reaction time at the surface of the nuclei 1/kipsg, which corresponds to 6 <« 1; this
will be so if

ro* & D/ ks, (15)
If 6 < 1 near a droplet, and hence &6 < 1, we can neglect the right side in (14), and then the solution

subject to the boundary condition will be 6_ = 0; we substitute this solution into (13) and use the boundary
condition ¢ = 1, af = a;°, to get the distribution for the droplet evaporation product concentration for £6 « 1t
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=[v; (1 — B /Bo) /¥] + lap — vy (1 — Boo / Bo) / v]e-Bdl1/5-1 (16)

At large distances from the droplet, where £ ~ 1, we introduce the new variables

z = {8e [(v/ 2)%wa,,” | v, z =a;/Bd
= (v /2%, & =1/8%8(v/2wa, /vl (17)

where {* is the coordinate at which the Stefan flux becomes zero. Then since ag =ag" + O (J), at large
distances, we neglect quantities of the order of o to get

ﬁ<x>

8—2.132 d (COS (?/_) ch (U_) %) — (COS (y~) ch (y—) . _B_o_

s (18)
cos (y_) ch (y ) dy_

V
2= o 2L (v va vy R T

Although at ¢ = £* the value of S is infinite, and hence also is the reaction, the consumption of droplet
evaporation products in this zone remains finite, so it is possible for gaseous evaporation products from
the droplet to penetrate into the region ¢ < ¢*, We repeat the above arguments to get equations analogous
to (18) for the concentrationdistribution in this region:

gta? - (SR Ue) — — (cos (y,) ch(y,) — 1)

x2

Bo cos (v,) ch (yy) d
—;xé;ﬁf (19)

2= &L [(v)2) vap VI
Eron g
g, = vryeee (e

The boundary conditions for (18) and (19) are put as

z=0,y=0 200, y>0 =1y =y, =a/2
dy, (20)

Bycos(y)ch(y ) —= =B cos (y4)ch(y.) T

The latter boundary condition shows that there is no concentration discontinuity at £ = £*, which can
serve to determine the dependence of € (the coordinate of the point where the Stefan flux becomes zero)
on f», which itself is dependent on the initial parameters, We add the diffusion equations in pairs in such
a way as to eliminate the right sides and solve the resulting equations subject to the condition 6 « 1 with
t=1to get

af =1— [1 — <1 — :p >am°] e 21)
o

As af~ 6, at large distances, we get from (16) with an accuracy up to quantities of zero order in 6
that

e}
]

= =1 -—%[1—(1~

To determine how € varies with B and the concentration distribution far from the drop (¢ ~1/6),
we consider (19), restricting consideration to the case € <« 1, which is of the major practical importance,
We see from (19) that in that case the values of y,, z, and B change only in a small region around x = 1
of width of the order of €, with y+ = 0 and z = 0 in the rest of the region of the solution to (19), Nearx =1
we introduce the new coordinate X = {x— 1)/ and neglect quantities of the order of € to get a solution to
(19) as

2 Y ap e (1 — e—%)] (22)

O\/

dy, .
(2008 (1) ch () G- 1* = cos (4, sh (y.) -+ sin (y) ch (9) — . /2 — o5
~— [sin (2y.) 4 sh (2y+)] /4—[sh (2y,) cos(2y,) 4~ ch (2y,) sin (2y,)] /8 )
Then we use the boundary conditions of (20) to get for x = 1 that
a4 3 1 a
€os (l/—) 1/-— = BOS [Ch (_g__) — 7 /4 _— —8— sh TC] (24)

Figure 1 and 2 show numerical solutions to (19) and (23); the first shows the relation between € and
{(— B /By), which satisfies all the boundary conditions of (20) and (24). The Stefan flux becomes zero at
a finite distance from the droplet surface such that € ~0.3-0.4, not only for combustion in water vapor and
carbon dioxide but also in oxygen. The second figure shows how y_ (curve 1), Bdy/Bydx (curve 2), and
B/8By (curve 3) vary with x for combustion in water vapor or carbon dioxide (8o = 0),
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050 = As the Stefan flux becomes zero at £ = £ *,the steady-state particle
e /g distribution near this point is reached in a time much larger than the
characteristic droplet combustion time 2r¢*/o; inthat sense, the droplet
combustion is not even quasistationary, but Fig. 2 shows that in the
present case, namely € <1, the main consumption of evaporation products
025 and the related formation of condensed oxide particles occurs at distance
: / £~ 1/8 from the droplet, while the variation in the number and size of

the condensate particles near ¢ = ¢ *is negligibly small. In view of this,
the situation is nonstationary only on account of the motion of the oxide
particles, not because of formation and growth.

Consider the oxide formation in the combustion of a metal droplet

220 4735 a5 .
of radius R; we assume that the ratio of roz/D to the characteristic drop-
Fig, 1 let size variation time 2ry’/c will be less than 6° if the law r,® = R¥—at
applies, and this condition gives
ro® > aD" [ 2B, (kpso)" (25)

It can be shown that this restriction includes the restriction that
the time of flight of an oxide particle formed near the droplet surface
\Z 7/ ' outtoa distance ¢ ~1/6 is less than the characteristic droplet-size

// variation time.
7 We assume that (25) is met and find the particle size distribution
' for which purpose we differentiate (9) with respect to &' and divide (8)
\ by the resulting expression. Then integration over the entire combustion

time T = R*/e gives

76 /
aN

e

L8

12 l

)z

2D ka»

2 :
, WZTHR:‘%T 8. (26)
7 T A AT This equation goes with (19) in parametric form (parameter {') to
give the particle size distribution from a burning metal droplet; the
Fig. 2 maximum oxide particle size in the gas @, is found by substituting
' =1and ¢ = £*into (9), which gives
Pw = [(p / p)?ky / 2vkyplte @27)

The result for the particle size spectrum does not constitute the complete spectrum for the droplet
combustion products, since a considerable fraction of the oxide may be formed at the droplet surface, and
the condensate spectrum calculated for the gas may be substantially modified by coagulation processes,
which we do not consider here.

The function of (9), (26), and (27) allows one to determine the mass of oxide formed in the gas by
metal droplet combustion; we integrate the product of the distribution and the mass of the oxide particles
7¢3p,/6 with respect to size from 0 to @p, to get

—83
Ny = —;*- nR%p 2—5— e = )

(28)

If there is condensed oxide on the hot metal droplet, the evaporation products are not necessarily
metal vapor; when aluminum burns, for example, it can be shown from thermodynamic data [3] that the
main equilibrium product from evaporation of condensed metal and oxide will be Al;O; oxide evaporation
along with the metal from the droplet. The oxide formation metal at the droplet surface appears to involve
penetration of oxidant, which enters into a heterogeneous reaction with the condensed metal in accordance
with v mel + voxlox] = el + Vp pl, where [my]is the condensed metal.

When the entire droplet has burned, the mass of oxide is 47rR3pm/3vm, where pyy, is the density of
the metal, so the proportion of oxide formed in the gas phase (reckoned relative to the total mass of oxide)
is

2D m,

b 22 0 — ) (29)

We give some numerical evaluations for the basis for the main assumptions made above; first of all
we check the assumption that the condensate evaporation rate is small relative to the formation rate, which
can be put as ke << Pozaf ax, for this second-order reaction, where ke is the constant of the equilibrium
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petween the concentrate and gaseous products. For Al30 + 0y = Aly0; at 3000° K we have ke = 3,66+ 10-8
atm?, which shows that the above assumption is correct for all realistic concentrations (agx ~1, af~ 6).

The condensation occurs in the presence of excess oxidant, so one supposes that the condensation is
proportional to the number of collisions between molecules of the droplet evaporation products and the
surface of a condensate particle. Then the rate constant for the condensation is kyp = wv/4, where v is
the thermal velocity of the gas molecules and w is the collision efficiency. It has been shown [2] that the
mean value is w=17.5+10"% for magnesium vapor combustion; the mean speed of gas molecules at 3000° K
is about 10° cm/sec, so the condensation rate constant kyp is 1.9 - 10% em/sec.

It is difficult to estimate the nucleation rate constant, since nothing has been published on the question;
it has been shown [4] that the maximum oxide particle size produced in the gas by combustion of aluminum
and berylhum droplets 1s about 1 #m, We substitute this value of ¢, into (27) to get the nucleation rate
constant kgp as 5.9° 10! cm'3 -sec™!, The following values were used in th1s calculation: v=1,p=5,1"

1078 mole/cm®, pg = 3.6 1072 mole/cm’®, &= 8.8-107* em¥sec, pD = 7-10-" mole /om - sec, B = 0.3.

We substitute these quantities into (15) and get that parameter ¢ will be small if ro < 3.7 10% cm or
if the metal particle diameter is less than 740 Hm.

We substitute the numerical values into (25) to find ouat the quasistationary approximation applies to
a burning metal droplet if rg > 2 1073 em or if the diameter of the droplet is larger than 40 Mm.

We now consider under what conditions we can neglect the rate of consumptmn involved in nucleation
relative to the condensation rate. In the present case this can be put as 62 4’ kzp ry pC/ 3 pD, where M is
the radius of a nucleus. We substitute for the numerical values to get that the assumption is correct if
#<«<22-107° cm or 0.22 #m.

The the condensed combustion products form in the vapor in a special state in the case of small metal
droplets, as the kinetic resistance is large by comparison with the diffusion one. Condensation in the gas
over the metal droplet has little effect on the combustion rate; the heat needed to evaporatethe metal is
produced directly at the droplet surface, and the combustion ratedimiting step is oxidant diffusion.

All these results apply only when the Stefan flux is directed away from the surface of the droplet; to
determine @ and 5 we need to consider the heat-balance equation for the droplet surface,

We indebted to V. B, Librovich for comments, discussion, and substantial assistance.
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